Why CCUS is Essential to Net-Zero

Suzie Ferguson 13th November 2020

Agenda

- Introduction
- CCS Technologies
- Applications of CCS
- Global Greenhouse Gas Emissions Context

Introduction

What is CCS?

Carbon Capture and Storage (CCS) is:

The capture of carbon dioxide (CO_2) which would be emitted to the atmosphere and transporting it to a suitable location for permanent storage.

Carbon Capture and Utilisation

The capture of (CO_2) which would be emitted to the atmosphere and using it to create a saleable product.

CCS and CCU are often grouped together as "CCUS".

https://www.slideshare.net/globalccs/hagen-13735499

Introduction - Speaker Background

- My generation grew up learning about Rio Accord in school then the Kyoto Protocol as current news
- Studied Chemical Engineering to help design solutions to climate change
- Joined Foster Wheeler from University, now Wood, an Engineering Contracting firm working in the oil & gas / energy industry
- Moved to CCS area in 2006
 - Involved in studies and design of projects in this area for most of the last 13 years

CCS Technologies

CO₂ Capture using a liquid solvent

Image from Humber Zero Project

CO₂ Capture using a liquid solvent

Post Combustion CO₂ Capture

- Capture of CO₂ after combustion has taken place
- Most proven technologies are solvent based and have been in successful and safe operation for decades.
- > Near atmospheric pressure stack gases contain 3.5 to >20 vol% CO_2

Image of SaskPower's Boundary Dam Power Plant https://www.saskpower.com/Our-Power-Future/Infrastructure-Projects/Carbon-Capture-and-Storage/Boundary-Dam-Carbon-Capture-Project

Pre-Combustion CO₂ Capture

- Capture of CO₂ before combustion has taken place
- Includes removal of CO₂, sometimes all carbon species, from a potential fuel stream
- High partial pressure streams containing no oxygen
- Most existing CO₂ removal units vent a nearly pure CO₂ stream to atmosphere
- A more complex route to power

Oxy-Combustion CO₂ Capture

- Combustion with oxygen instead of air
- Exhaust gas comprises mostly CO₂ and water, since nitrogen is removed in an ASU
- Recycle of exhaust gas is required to moderate combustion temperature
- Designs appear competitive and demonstrations in progress
- Promising option for FCC units

Image of Net Power's Allam Cycle Oxy-Combustion Technology https://www.bbc.com/news/business-24225901

Image of The Compostilla Project Oxy-CFB https://ieaghg.org/docs/General Docs/OCC2/Presentations/2 OXYCFB300 Compostilla OCC2 ML.pdf

Applications of CCS

Pre-Combustion CO₂ Capture

Already applied for CO₂ removal in:

- Gas Treating Plants
- LNG Liquefaction Plants
- Hydrogen Production Units
- Ammonia Production Plants
- Integrated Gasification Combined Cycle power plants

These units only need add CO₂ compression and connection to a CO₂ store often a **lowest cost route to emissions reduction from existing assets**

Also provides a route to decarbonisation of fuel gas systems:

- Oil Refineries
- Steel Plants
- Domestic gas grids

Example - Gorgon CO₂ Injection Project (Chevron)

Gorgon Carbon Dioxide (CO₂) Injection Project:

- world's largest CO₂ injection plant
- A storage capacity of 4 MTPA, accounts for 40% of the Gorgon total projected emissions.
- The CO_2 injection system can handle 250 MMSCFD of high purity CO_2 .
- Key concern is ensuring control of the corrosion rates during operations.

Virtuoso Wood's Flow Management Tool (FMT): being deployed to provide online monitoring and offline simulation functionalities to help in the operations management.

Post-Combustion CO₂ Capture

Already applied as a CO₂ source in:

- Coal Power Plants
- Fertiliser Plants

Bolt-on-the-back solution that can be highly effective >95% CO₂ capture and applied to **any exhaust gas**:

- Baseload & grid responsive thermal power plants (fossil fuel / biomass / energy from waste)
- Combined heat and power units
- Industrial fired heaters
- Refinery FCC units
- Hydrogen production plant flue gases
- Cement and lime production flue gases
- Glass production line flue gases

NSG's Float glass process https://www.slideshare.net/rjmitson/flat-glass-productsfloat-manufacture2007

Image of Aker's Just Catch technology https://www.akercarbonca pture.com/technology/pr oducts-and-solutions/

The chemistry of glass manufacture results in unavoidable CO₂ emissions as well as fuel consumption

NSG's Float glass lines in St Helen's UK (google earth)

CCS based GHG Removal Technologies

 CO_2 capture applied to any bio-derived CO_2 stream has the potential to result in net-negative CO_2 emissions:

- Direct Air Capture (DACCS)
- Bioenergy with CCS (BECCS)
- CO₂ capture from biomass fed hydrogen production (gasification or reformation)
- CO₂ capture from biofuels production
- CO₂ capture from Energy from Waste of Waste to synfuels processes
- CO₂ Capture on other biogenic CO₂ streams currently vented
 - Brewing and other fermentation based processes
 - Bio-ethanol production
 - Biogas production

BECCS Animation by Drax https://www.drax.com/press_release/world-first-co2-beccs-ccus/

Global Greenhouse Gas Emissions Context

Global Context

▶ IPCC 1.5°C Report published in 2018:

- Limiting global warming to 1.5°C is possible
- Requires deep emissions reductions
- Rapid, far reaching and unprecedented changes in all aspects of society

▶ We must decrease net emissions by 45% by 2030

We must reach net-Zero by 2050

Global Warming of 1.5°C

An IPCC special report on the impacts of global warning of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global exposes to the threat of climate change, sustainable development, and infinits to orializate powerty.

Global Context

- Electricity and heat: burning coal, oil and gas for heat and power
- Industry: burning fossil fuels for energy AND emissions via process chemistry
- Agriculture and deforestation does not include the CO₂ removed by ecosystems
- Transportation: road, rail, air and marine
- Buildings: space heating, water heating and cooking

Source: IPCC 2014

UK Emissions by Sector

Figure 17: Projected UK emissions (with existing measures)²⁴⁷

2018 Total UK emissions were 458 tCO2e

Electrification using renewable or nuclear energy - with energy storage - can decarbonise many **but not all** emissions sources

Minimum CCS requirements for Net-Zero

Some production processes cannot be decarbonised any other way:

Other very handy uses of CCS

- CCS can reduce CO₂ emissions from (existing or new) demand responsive fossil fuel power stations by >90%.
- CCS applied to natural gas for large scale hydrogen production can decarbonise domestic heating and vehicles at greater scale and lower cost sooner than via renewably powered electrolysis.
- CCS processes can capture CO₂ directly from the air, using energy to directly reduce CO₂ concentration in the atmosphere.
- CCS applied to biomass (or biogenic waste) combustion power generation can produce carbon negative electricity.

CCS gives us many more routes and options to decarbonise and the ability to achieve Net-Zero

Questions & Answers

